Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Feng Yang, ${ }^{\text {a }}{ }^{*}$ Da-Qi Wang, ${ }^{\text {b }}$ Guang-You Zhang ${ }^{\text {c }}$ and Takuji Hirose ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Applied Chemistry, Faculty of Engineering, Saitama University, 225 Shimoohkubo, Sakura, Saitama 338-8570, Japan,
${ }^{\mathbf{b}}$ Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China, and 'Department of Chemistry and Chemical Engineering, Jinan University, Jinan, Shandong 250022, People's Republic of China

Correspondence e-mail:
jn_yangxiaofeng@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.039$
$w R$ factor $=0.102$
Data-to-parameter ratio $=9.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(+)-N-[(R)-1-(2-Hydroxy-5-methylphenyl)propyl]-N-[(R)-2-methyl-1-phenylpropyl]ammonium chloride

The title compound, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$, was synthesized by a condensation reaction. The absolute configuration of the new stereogenic centre (the C atom between the N atom and the phenol ring) was determined as R. The crystal structure is stabilized through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Comment

The search for new chiral ligands to be used in asymmetric catalysis is of great interest in the field of synthetic chemistry (Pu \& Yu 2001; Cimarelli et al., 2002). Carbon-carbon bondforming reactions remain an active area of research (Le Goanvic et al., 2002). A popular reaction is that of dialkylzinc with pro-chiral aldehydes (Le Goanvic et al., 2002; Vilaplana et al., 2002; Superchi et al., 2002), since the chiral secondary alcohols that are formed are important substrates for drug synthesis. Amino alcohols are excellent ligands for this reaction, as shown by Noyori \& Kitamura (1991). 1,3-Aminophenols are analogous to amino alcohols, although they were not used as chiral ligands in asymmetric catalysis until 1998 (Cardellicchio et al., 1998, 1999), when they showed high enantioselectivity. Since then, interest in the synthesis of aminophenols and their derivatives, and in their application in asymmetric catalysis, has increased significantly (Lu et al., 2002; Li et al., 2003; Zhang et al., 2003; Yang, Zhang, Zhang et al., 2005). Following on from our previous work (Yang, Zhang, Liu et al., 2005), we prepared a new aminoalkylphenol, namely 4-methyl-2-[(R)-1-((1R)-2-methyl-1-phenylpropylamino)propyl]phenol, (I). In this paper, we report the structure of the title compound, (II), which is a salt of (I) with HCl .

(II)

The molecular structure of (II) is shown in Fig. 1. The absolute configuration of the new stereogenic centre C 1 is R. The chain of atoms $\mathrm{C} 3 / \mathrm{C} 2 / \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 14$ shows an approximately all-trans conformation (Table 1). The dihedral angle between the $\mathrm{C} 4-\mathrm{C} 9$ and $\mathrm{C} 15-\mathrm{C} 20$ aromatic rings is 12.9 (2) ${ }^{\circ}$.

Atom N 1 acts as a hydrogen-bond donor to phenol atom O1 and to the Cl 1 anion (Fig. 1 and Table 2). There is also an $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond, forming chains along the b axis (Fig. 2).

Received 7 May 2006
Accepted 1 June 2006

Figure 1
The asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Figure 2
A view of the packing in (II). H atoms have been omitted, except for those involved in hydrogen bonds (dashed lines).

Experimental

(R)-2-methyl-1-phenylpropylamine (3 mmol ; Yang, Zhang, Liu et al., 2005) and 1-(2-hydroxy-5-methylphenyl)-propan-1-one (3 mmol ; purchased from J \& K Chemical Ltd) were dissolved in methanol $(20 \mathrm{ml})$ and reacted at room temperature for 12 h . The solvent was removed and $\mathrm{NaBH}_{4}(15 \mathrm{mmol})$ was added to the solution in a tetrahydrofuran-ethanol ($1: 1 \mathrm{v} / \mathrm{v}, 20 \mathrm{ml}$) mixture. The reaction was allowed to stand and was monitored by thin-layer silica-gel chromatography. The reaction was stopped when complete conversion of the starting material was detected by thin-layer silica-gel chromatography. 6 M HCl was then added dropwise to the reaction mixture until hydrogen production ceased and the mixture was then neutra-
lized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The aqueous solution was extracted with CHCl_{3}. The organic layer was dried with anhydrous sodium sulfate and filtered. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (first eluted with chloroform-methanol, 60:1, v / v; second eluted with chloroform) to give the chiral compound, (I) \{canary-yellow oil, $[a]_{\mathrm{D}}^{15}$ $\left.=52.2^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)\right\}$. The chemical yield of $(R, R)-(\mathrm{I})$ and the diastereoisomeric excess \{measured by chiral high-performance liquid chromatography [Chiralcel OD-H, propan-2-ol-hexane (5:95, v / v) of the corresponding amide derivatives of racemic and chiral (I)]\} are 76.2% and 96.0%, respectively.

Compound (I) and concentrated HCl were reacted at room temperature and a colourless solid was precipitated. The solvent was removed and the solid residue was recrystallized from an ethanolhexane ($7: 3, v / v$) mixture to yield compound (II) (m.p. 461-462 K).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}^{+} . \mathrm{Cl}^{-}$
$M_{r}=333.88$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.725$ (2) \AA
$b=11.641$ (3) \AA
$c=19.313$ (5) \AA
$V=1961.7(9) \AA^{3}$
$Z=4$
$D_{x}=1.131 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.33 \times 0.21 \times 0.13 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.937, T_{\text {max }}=0.975$

$$
\begin{aligned}
& 10299 \text { measured reflections } \\
& 1975 \text { independent reflections } \\
& 1503 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.038 \\
& \theta_{\max }=25.0^{\circ}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.102$
$S=1.05$
1975 reflections
208 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0453 P)^{2}\right. \\
& +0.4485 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{\AA^{-3}} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 1469 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.07 \text { (9) }
\end{aligned}
$$

Table 1
Selected torsion angles $\left(^{\circ}\right.$).

$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-169.4(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$	-168.3 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$177.8(3)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 14$	176.3 (4)

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.90	2.27	$3.144(3)$	163
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1$	0.90	2.06	$2.737(4)$	131
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.82	2.24	$3.032(3)$	161

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.
All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.90 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, or $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for methyl and hydroxy groups.

organic papers

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was financially supported by the Natural Science Foundation of Shandong Province, China (grant No. G0231). We thank Liaocheng University for the X-ray analysis.

References

Bruker (1997). SMART (Version 5.059), SAINT (Version 6.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Cardellicchio, C., Ciccarella, G., Naso, F., Perna, F. \& Tortorella, P. (1999). Tetrahedron, 55, 14685-14692.
Cardellicchio, C., Ciccarella, G., Naso, F., Schingaro, E. \& Scordari, F. (1998). Tetrahedron Asymmetry, 9, 3667-3675.

Cimarelli, C., Palmieri, G. \& Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2417-2426.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Le Goanvic, D., Holler, M. \& Pale, P. (2002). Tetrahedron Asymmetry, 13, 119121.

Li, X.-S., Sheng, Z.-Q., Ge, J.-F. \& Zhang, Y.-W. (2003). Chin. J. Org. Chem. 23, 387-389. (In Chinese).
Lu, J., Xu, X.-N., Wang, S.-Z., Wang, C., Hu, Y.-F. \& Hu, H.-W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2900-2903.
Noyori, R. \& Kitamura, M. (1991). Angew. Chem. Int. Ed. Engl. 30, 49-69.
Pu, L. \& Yu, H. L. (2001). Chem. Rev. 101, 757-824.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Superchi, S., Giorgio, E., Scafato, P. \& Rosini, C. (2002). Tetrahedron Asymmetry, 13, 1385-1391
Vilaplana, M. J., Molina, P., Arques, A., Andres, C. \& Pedrosa, R. (2002). Tetrahedron Asymmetry, 13, 5-8
Yang, X.-F., Zhang, G.-Y., Liu, C.-X. \& Zhang, Y. (2005). Chem. Res. Appl. 17, 249-251 (In Chinese).
Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. \& Wang, X.-B. (2005). Acta Cryst. C61, o262-o264.
Zhang, G.-Y., Liao, Y.-Q., Wang, Z.-H., Nohira, H. \& Hirose, T. (2003). Tetrahedron Asymmetry, 14, 3297-3300.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

